すべての動画をフルで見よう!

初回登録なら7日間無料! いつでも解約OK

いますぐ無料体験へ

ビジネスパーソンのためのデータ・AIリテラシー/⑤AIシステムの実装・運用

  • 0h 10m (5sections)
  • テクノベート (テクノロジーとイノベーション)
  • 実践知

このコースについて

ビジネスパーソンがデータやAIを活用するうえで、知っておかなければならない知識やよく直面する課題を、用語解説を交えてやさしくお伝えします。この動画では、AIシステムの環境構築後の「デプロイ」について取り扱います。AIモデルができたとしても、そのままの状態でビジネス上で利用することは出来ません。AIのパフォーマンスを高めていくにはどうしたら良いのか、一緒に学んでいきましょう。

監修:DataRobot
DataRobot はAI活用を民主化するため2012年に設立、同社が提供する「DataRobot AI Cloud」は次世代の AIである 。AI Cloud は、あらゆるデータタイプ、あらゆるユーザー、あらゆる環境を統合し、業界・業種を問わずすべての組織に対して重要で価値あるビジネスインサイトを提供することをビジョンとしている。

DataRobotはAI Cloudのリーダーとして、あらゆる組織の本番環境へのAI導入を加速しており、Fortune 50の3分の1を含む、業界や業種を超えたグローバルな顧客から信頼を得ている。
「DataRobot AI Cloud」は、今日の市場において最も広く展開され、実証されたAIプラットフォームの1つであり、世界中の顧客に対して1.4兆件以上の予測を提供している。

DataRobotを体験されたい方はこちらから(30日間のフリートライアル)
https://www.datarobot.com/jp/trial/?utm_source=globis&utm_medium=partner&utm_campaign=FreeTrial23JP-globis

DataRobot お問合せ:
https://www.datarobot.com/jp/resources/contact_us_g/

グロービス経営大学院の「ビジネス・データサイエンス」クラスに「DataRobot AI Cloud」を提供中。
グロービス経営大学院 ビジネス・データサイエンス 講座詳細:
https://mba.globis.ac.jp/curriculum/detail/dsb/

講師プロフィール

小川 幹雄 DataRobot Japan バイスプレジデント, ジャパンAIエキスパート

DataRobot Japanの創立期に参画し、様々な業務を担当してビジネス拡大に貢献。その後、金融業界を担当するディレクター兼リードデータサイエンティストとして、金融機関のAI導入支援やCoE構築支援をリード。2023年からは日本のAIエキスパート部門の統括責任者に就任。AI導入・活用支援のノウハウを活かし、公共機関や大学機関での講演も行っている。また、一般社団法人金融データ活用推進協会(FDUA)の企画出版委員会の委員長代行も務めている。
(肩書きは2023年3月撮影当時のもの)

コース内容

  • AIシステムの実装・運用
  • AIモデルのデプロイとは?
  • 実装時に注意するポイント
  • 運用時に注意するポイント
  • 今回のまとめ

より理解を深め、他のユーザーとつながりましょう。

13人の振り返り

  • naoki_sasano

    メーカー技術・研究・開発

    機械モデルで予測し、現実との乖離が発生した場合の原因究明が重要で、それをフィードバックし、モデルのブラッシュアップを継続する必要があることを学んだ。

    2023-11-04
  • yuri_sudo2

    その他

    実装についてよくわかった

    2023-11-13
  • 7031

    経営・経営企画

    ユーザ目線での結果表示、システム構築した運用と実運用時の変化がずれてきたときは非常に難しい問題になるなと感じました。

    2023-11-03
  • stani

    専門職

    デブロイはインターフェスとよく似ている。

    2023-10-27
  • a_7636

    人事・労務・法務

    コース①~⑤を通して言葉が分かりやすく、IT技術に疎い私でも興味を持つことができました。

    社内の情報システムの方やベンダ、コンサルだけ頑張っても業務改善はできないと思います。
    「私はITに疎い」、言葉がよく分からない、イメージつかないという方にこそ観ていただきたいです。

    2023-08-13
  • sss_kobayashi

    その他

    なぜ予測と異なったのか、それを基に次にどう活かすのか、を考えるところが人間の仕事。ここは面倒臭がらずにやる必要がある。

    2023-11-03
  • jshinmura

    IT・WEB・エンジニア

    学習した時と予測をしている時では、外部環境が変化している場合、精度が上がってこないことがある。
    常に環境は変化するものであることを前提に学習と予測の差を見ていくことが運用上で大事になってくる。
    また、運用の中では、AIのことをよくわかっている人だけが運用しているわけではない。それ以外の部門の人間がAIからの結果を受け入れて、彼らの行動や意思決定に活用されるために、営業やカスタマーサクセスなどAI開発部門以外のビジネスのことについての理解と彼らの次のアクションにつながるようなUIや情報提供もセットで開発していくことが必要であることを学びました。

    2023-10-28
  • watanabe-tat

    専門職

    AIシステムの環境構築後の「デプロイ」は、学習と予測の差異を、業務の視点で分析してチーム内で共有することが大事である。ビジネス上で利用するため、継続的なモデルディプロイを想定して、AIのパフォーマンスを高める必要がある。

    2023-10-08
  • sm054307

    経営・経営企画

    業務部門とデータ分析部門が密に連携を取り合う必要があると感じた

    2023-10-23
  • yu0917

    販売・サービス・事務

    ・デプロイ…AIモデルを実際に使用する環境に統合し、エンドユーザーが安心して利用できるよう様々な調整を施すこと。

    →現在、AIを使用した発注アシストシステムを稼働し始めたが、精度が低い状況。
     データの更新と補正を重ねて、業務効率の向上を図れるよう「デプロイ」して行く。

    2023-11-14
  • masuhide

    経営・経営企画

    ユーザ目線での結果表示、システム構築した運用と実運用時の変化がずれてきたときは非常に難しい問題にあたってしまうなと考えました。

    2023-10-31
  • fanatic

    人事・労務・法務

    業務側の知見が大切なことがわかりました

    2023-11-13
  • k_yuna

    販売・サービス・事務

    大変勉強になりました。

    2023-11-14

関連動画コース

新着動画コース

10分以内の動画コース

再生回数の多い動画コース

コメントの多い動画コース

7日間の無料体験を試してみよう

無料会員登録

期間内に自動更新を停止いただければ、料金は一切かかりません。